READY

READY Bender ${ }^{\text {® }}$ Concept Sketches

READY Bender ${ }^{\circledR}$
 CB1 Concept Sketch

A READY Bender ${ }^{\left({ }^{(3)}\right.}$ is a CB1 tool when PT, PR and PH are within the proper parameters to use standard tooling.

CB1
Square Bend
CB = Classified Bend \#
PT $=$ Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

READY

READY Bender ${ }^{\text {® }}$

CB2 Concept Sketch

A READY Bender ${ }^{\circledR}$ is a CB2 tool when the PH dimension is too short to utilize a standard tool. Generally 2.8 (PT) + PR is the minimum leg possible. Part radius (PR) is equal to or less than PT. (Call READY for minimum dimensions)

CB2 Short Leg
$C B=$ Classified Bend \#
PT $=$ Part Material Thickness
PL $=$ Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

CB3 Concept Sketch

A READY Bender ${ }^{\circledR}$ CB3 bends where the bend angle is over $90^{\circ}\left(120^{\circ}\right.$ max.).

CB3 Extreme Concept Sketch

A READY Bender ${ }^{\circledR}$ CB3 Extreme (over 110°) will most likely need to run off of a pad. This is to keep the tool from sticking on the part.

CB3
Over Square

CB = Classified Bend \#
PT $=$ Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

READY Bender ${ }^{\circledR}$
 CB4 Concept Sketch (on centerline)

A READY Bender ${ }^{\circledR}$ CB4 (on centerline) - the maximum angle remaining on centerline is 105° included.

CB4 Concept Sketch (ahove centerline)

A READY Bender ${ }^{\circledR}$ CB4 (above centerline) includes angles over 105° will be above centerline.

READY Bender ${ }^{\circledR}$
 CB5 Concept Sketch

READY Bender ${ }^{\circledR}$ CB5 bends will most likely need to run off of a pad. This is to maintain rocker retention in the saddle.Zee Benders require more tonnage as you are forming two legs in one stroke.

CB5
Zee Bend
CB = Classified Bend \#
PT = Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

READY

READY Bender ${ }^{\circledR}$
 CB6 Concept Sketch

READY Bender ${ }^{(®)}$ CB6 bends will most likely need to run off of a pad. This is to maintain rocker retention in the saddle. Zee Benders require more tonnage as you are forming two legs in one stroke.

CB6
Open Zee

CB = Classified Bend \#
PT $=$ Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

READY

READY Bender ${ }^{\text {® }}$
 CB7 Concept Sketch (not interlaced)

READY Bender ${ }^{\circledR}$ CB7 bends a channel where the front of the saddle must be smaller than standard.

CB7 Concept Sketch (interlaced)

READY Bender ${ }^{\circledR-}$ CB7 bends a channel where the front of the saddle must be smaller than standard. Tooling can also be interlaced. Rockers and saddles are notched.

CB7
Channel Bend

CB = Classified Bend \#
PT $=$ Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

READY

READY Bender ${ }^{\circledR}$
 CB8 Concept Sketch

READY Bender ${ }^{(\Theta)}$ CB8 has two CB5 bends where the front of the saddle is shorter than standard. Note: CB8 bends will most likely need to run off of a pad. This is to maintain rocker retention in the saddle. CB8 benders can also be interlaced. Max tonnage Ready Bender application.

CB8
Hat Bend

CB = Classified Bend \#
PT = Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle = Included Angle

READY

READY Bender ${ }^{\text {B }}$
 CB13 Concept Sketch (large radius)

READY Bender ${ }^{\circledR}$ CB13 - the bend is a Larger Radius bend when the inside bend radius becomes too large to use the rocker diameter designated by the material thickness. Extra overbend will be needed to end up with the proper bend angle. Due to additional springback, Anvil Radius may need to be smaller than final Part Radius (PA).

CB13
Large Radius Bend

CB = Classified Bend \#
PT = Part Material Thickness
PL = Part Length (bent leg)
PA = Part Angle (degrees of bend)
PH = Part Height (bent leg)
PR = Part Radius
PC = Part Channel (inside)
K = see catalog
Incl. Angle $=$ Included Angle

READY

READY Bender ${ }^{\circledR}$

CB 22 Concept Sketch

CB 23 Concept Sketch

$3 R D$ HIT CB23 (ALLOWS YOU TO FINSH PART WTH BOTTOMNG FORM)

READY
Selecting the right Bender is as easy as 1.-. 2. - . 3 Fax or email this worksheet for FAST QUOTES benders@readytechnology.com

1 Company:

Contact Name: \quad Title:	
Address:	
City, State, Zip:	
Telephone: \quad Fax:	
Email Address:	

2 Please describe your application

This will be formed in (please check)Stamping Die \qquad Automated MachinePress Brake, tonnage of press brake

Here are some of the most popular applications:

Square Bend CB1 Over Square CB3	Channel Bend CB7	Zee Bend CB5
Form 135° In One Hit	Even Narrow Channels	Form Offsets In One Hit
Annual production		
Type of material formed		Notes
Tensile strength		
CB = Classified Bend \#		
PT = Part Material Thickness		
PL = Part Length (bent leg)		
PA = Part Angle (degrees of bend)		
PH = Part Height (bent leg)		
PR = Part Radius		
PC = Part Channel (inside)	-	
Are tool marks* on part acceptable\} *We specialize in forming even prepaint without		

*We specialize in forming even prepaint without tool marks.

Please Quote:

Stamping Dies
\square Ready makes determination
\square The READY Bender
\square Ready High Production Bender
\square Ready Bender - Metric
\square Ready High Production Bender - Merric
\square Compact Benders

READY TECHNOLOGY, INC.

333 Progress Rd. • Dayton, OH 45449 • 937-866-7200 • 800-543-4355
Fax 937-866-7226 • www.readytechnology.com
READY Benders ${ }^{\circledR}$ are covered by USA and international patents, and patents pending. © 2015 READY TECHNOLOGY, INC., Catalog No. 05-15

